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ABSTRACT 

Accurate, efficient thermal analysis is a well recognized challenge for accurate spacecraft design 

and control. This paper presents a novel research effort aimed at the development of 

mathematically rigorous Model Order reduction (MOR) algorithms, as well as an integrated 

framework to automatically generate reduced thermal models of spacecrafts for computation by 

fast, efficient Differential-Algebraic Equation (DAE) solvers. Two testbed models consisting of 

constant sources, capacitances, and conductances with approximately 600 and 3000 nodes were 

used to evaluate a Trajectory Piecewise Linear Model Order Reduction (TPWLMOR) algorithm. 

The full-scale models were reduced to a low-dimensional model with 64 nodes. The overall 

MATLAB solution of the reduced model took about ~1 second compared to ~10 seconds and 

~300 seconds for the full-scale solution. A comparison of reduced order model against the full-

scale solution shows excellent agreement with the maximum absolute nodal temperature error 

spanning from -2.8°C to +2.9 °C (largely between -1 °C and +1 °C) and the average relative error 

< 0.5%. While some computational expense is incurred to generate the reduced model, its 

reusability enables significant savings in computational times and resources for transient 

simulation and analysis. The case studies firmly establish the feasibility of our MOR technique 

for spacecraft thermal analyses of NASA relevance. 

INTRODUCTION 

Trends in recent years have been towards larger thermal models and have therefore placed 

additional computational demands on the thermal engineer. Attempts to verify designs by 

modeling and analysis rather than testing further this burden. Current analysis tools heavily rely 

on high-fidelity simulations that are computationally prohibitive and require a significant level of 

expertise from spacecraft design engineers, leading to substantial cost overruns and delays in 

spacecraft development. Therefore, there is a clear and unmet need for a software tool that can 

automate the generation of mathematically rigorous, reduced thermal models (from large models) 

to enable order-of-magnitude enhancements in computational resources and analysis time leading 

to efficient spacecraft design.  

To address these critical needs, CFD Research Corporation (CFDRC) is developing 

mathematically rigorous model order reduction (MOR) algorithms and simulation tools to 

automatically generate reduced thermal models amenable to fast computation by efficient 

Ordinary-Differential Equation/Differential-Algebraic Equation (ODE/DAE) solvers. The 

underlying principle of our MOR tool is to approximate a dynamic system response through 
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projection onto a low-dimensional subspace constructed by a combination of characteristic 

orthonormal basis vectors of the system.  

In this paper, we report on MOR algorithm development and model demonstration for selected 

testbed models consisting of constant sources, capacitances, and conductances with 

approximately 600 and 3000 nodes using a Trajectory Piecewise Linear Model Order Reduction 

(TPWLMOR) algorithm. The full-scale models were reduced to a low-dimensional model with 

64 nodes by the TPWLMOR yielding orders-of-magnitude speed up in the analysis time. A 

comparison of the reduced order model against the full-scale model results showed excellent 

agreement with the average relative error of less than 0.5%. To the best of authors’ knowledge, our 

work represents the first effort to apply mathematically rigorous, nonlinear MOR algorithms to 

spacecraft thermal analysis for automated generation of reduced thermal models and to develop a 

modular framework to integrate the whole process of the MOR, reduced model computation, and 

comparison and verification. 

The paper is organized as follows: The governing thermal equation and its matrix format are first 

introduced in Section 2. Section 3 elucidates the algorithm of the trajectory piecewise linear 

model order reduction, which is followed by the MOR verification and demonstration using two 

relevant case studies (Section 4). The paper is finally summarized in Section 5. 

GOVERNING EQUATION AND MATRIX FORMAT 

The governing thermal equation for the spacecraft thermal analysis is given in Eq. (1). The 

discretization of the spatial differentials in the equation (or termed semi-discretization) leads to a 

nonlinear dynamic system (DAEs/ODEs) with temperature terms up to the 4
th

 order (assuming 

constant thermal conductivity):  

 ( ) ( )4 4 4i
i ij j i ij j i si i i

i j i j

dT
C K T T R T T R T Q

dt ≠ ≠

= − + − − +∑ ∑  (1) 

where Ti, Ci, and Qi are, respectively, the temperature, thermal capacitance, and heat source of 

the i
th

 node (i=1,2…n), and n is the total number of nodes. Note that Qi includes internal heat 

generation (electronics heating) and environmental fluxes (e.g., solar radiation) at the boundary
1
; 

Kij and Rij are, respectively, the conductive and radiative conductors between nodes, and Rsi is the 

radiative conductor between the i
th

 node and deep space. Eq. (1) can be cast into a compact 

matrix form as follows: 

 ( ) ( ) 4where
dT

C f T D u f T A T B T
dt

= + ⋅ = ⋅ + ⋅  (2) 

where T(t)∈ℜ
n
 is a vector denoting the temperature at all the nodes; t is time; A∈ℜ

n×n
 and 

B∈ℜ
n×n

 respectively derive from the conductive and radiative conductors in Eq. (1); D∈ℜ
n×m

 is 

the correlation matrix assigning internal heat source and environmental flux into each node; f 

describes the nonlinear contribution from conduction and radiation to the temporal differential of 

nodal temperatures. The model reduction is essentially to reduce the dimension of T in the 

original system to order k≪n through projection (i.e., T=UrTr) onto a low-dimensional space 

Ur∈ℜ
n×k

 while retaining the same number of thermal inputs, i.e., 
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 ( ) ( )r rT U T T T Tr
r r r r r r

dTdT
C f T D u U CU U f U T U D u

dt dt

=→= + ⋅ = + ⋅←  (3) 

where Tr(t)∈ℜ
k 

is the temperature in the reduced system. Due to the greatly lower dimension of 

the reduced system relative to the original system (i.e., k≪n) and the use of the ODE/DAE 

solvers that rely on the matrix manipulation simultaneously on all nodes (rather than node-wise), 

the computational cost drops down significantly. Accordingly, the most critical step for 

generating reduced thermal model is to construct the low-dimensional projection space Ur as 

shown in the next section.  

TRAJECTORY PIECEWISE-LINEAR MODEL ORDER REDUCTION (TPWLMOR) 

In this section, we present the algorithm formulation and implementation of the Trajectory 

Piecewise-Linear Model Order Reduction (TPWLMOR) for the spacecraft thermal analysis. In 

contrast to the other nonlinear MOR approach (in particular, the Proper Orthogonal 

Decomposition-POD)
2
, TPWLMOR can generate reduced models without simulating the original 

full-scale model
3
. The TPWLMOR technique combines linear MOR algorithm and the concept 

of piecewise-linear (PWL) approximation. The MOR algorithm is used to find a series of 

linearization points along a typical trajectory, where local projection space Up can be determined 

to reduce the full-scale models around the linearization points. The local projection space can 

then be gathered to construct a global projection space Uk. On the other hand, the PWL 

approximation builds a global reduced model based on the weighted combination of the 

linearized low-dimensional models at the linearization points (along the trajectory) to mimic the 

behavior of the original nonlinear system. The procedure can be divided into three key steps as 

outlined below:  

Creating Reduced Model around the Linearization Points 

The nonlinear function f(T) above can be approximated using Taylor expansion about a certain 

temperature vector Ti, yielding 

 ( ) ( ) ( )p p pf T f T H T T≈ + −  (4) 

where Hp is the Jacobian of f(T) evaluated at Tp. Given s linearization points T1, T2, Tp…Ts, we can obtain 

s linearized full models, which are given by 

 ( )( ) and 1,2,
p p p p p

CdT dt H T f T H T D u H T D u p s= + − + ⋅ = + ⋅ = …  (5) 

where ( )p p p
D f T H T D = −   and [ ]1

T
u u= , i.e., the term f(Tp)-HpTp is treated as a constant 

input in the linearized model.  

A linear MOR method, such as a Krylov approach
3,4

 and the Poor Man Truncated Balanced 

Realization (PMTBR)
5
 is then used to identify a projection subspace Up∈ℜ

k×n
 and reduce the 

linearized full-scale model to dimension k at the linearization point Tp, yielding 

 and 1, 2,k p k p k

p k p k pC dT dt H T D u p s= + ⋅ = …  (6) 

where k T
p p pC U CU= , k T

p p p p
H U H U==== , k T

p pD U D==== , and Tk
p
is the approximate solution of Tp on the p

th
 

projection subspace, i.e., Tp = UpTk
p
. Simulate the reduced linear model in Eq.(6) and determine 
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the next linearization point Tp+1, while UpTk
p+1

 is close enough to the initial linearization point 

Tp, i.e., ∥UpTk
p+1

-Tp∥/∥Tp∥<ε, where ε is an appropriately selected constant. This procedure is 

continued till the end of the trajectory.  

Creating the Global Projection Subspace 

Given the local projection subspace Up from the last step, we can extract the global projection 

subspace Ur using single value decomposition (SVD). The global projection subspace Ur is then 

used to reduce the local linearized full-scale models.  

Specifically, we define P = [U1, U2,…Up,… Us], where P is the union of Up.  

Take a SVD of P to orthogonalize its column components, and construct the new global 

projection space Ur. by P ≈ Ur∑rVr
T
.  

The p local linearized reduced models can then be obtained by 

 and 1,2,r r r

p r p r pC dT dt H T D u p s= + ⋅ = …  (7) 

where r T
p r rC U CU= , r T

p r p r
H U H U==== , r T

p rD U D==== , and Tr is the approximate solution of T on the 

global projection space, i.e., T = UrTr.  

Generation of TPWL Reduced Thermal Model 

Next we construct the global TPWL reduced thermal models as a weighted combination of the 

local linearized reduced models (i.e., Eq. (7)), which is given by: 

( ) ( ) ( ) ( )
1 1 1 1

    and    1
s s s s

r r r

p r p r p r p r p r p p r

p p p p

w T C dT dt w T H T w T D u w T
= = = =

     
= + =     

     
∑ ∑ ∑ ∑  (8) 

The temperature-dependent weight wp represents the impacts of the p-th linearized reduced 

model to the global model. During a transient analysis, wp at each time step is determined by the 

following procedure: 1) for p = 1,…s, compute dp = ∥T-Tp∥2=∥Tr-Ur
T
Tp∥2; 2) take m = min (dp) 

for p = 1,…s; 3) for p = 1,…s, compute ωp = e
-λdp/m

; and 4) normalize ωp. Set 

( ) ( ) ( )
1

0

s

p r p r p rp
w T T Tω ω

−

=
= ∑ . Figure 1 summarizes the TPWLMOR algorithm. The TPWLMOR 

algorithm formulated in this paper was implemented in Matlab.  

 
Figure 1. Flow chart for constructing the reduced order models with TPWLMOR 
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RESULTS AND DISCUSSION 

In this section, we demonstrate the application of our MOR simulation tool to NASA-relevant 

case studies of thermal analysis, and compare the results against SINDA/FLUINT (S/F) for 

technology validation. Two key steps are involved in converting the full-scale S/F models to the 

reduced order models (ROM): (1) data export & model assembly and (2) MOR. The former 

extracts the model descriptive information from S/F and assemble the full-scale models amenable 

to Matlab simulation (referenced as Matlab full-scale model below); and the latter yields the 

ROM from the full-scale Matlab model for reduced order analysis. Therefore, both of them were 

verified by comparing ROM, full-scale Matlab, and S/F data in terms of steady-state and 

transient temperature distribution. The steady-state results in our ROM were obtained by 

simulating the transient thermal equilibrating process assuming an arbitrarily initial temperature 

(e.g., 0°C). Two testbed thermal models
6
 of LISA with different computational sizes were 

investigated (see Table 1). LISA is a constellation mission designed to detect and observe 

gravitational waves in the 0.1 mHz to 0.1 Hz frequency band. The small LISA model contains 

618 nodes while the mid-size LISA 2874 nodes. In the transient analysis of both models, the 

solar frequencies are, respectively, set at 0.1 and 1 mHZ with 1% fluctuation in solar intensity 

(around the steady-state values.) The full-scale Matlab model and ROMs were simulated in the 

script mode on a multi-user server equipped with a 3 GHz AMD Athlon 64 X2 Dual Core 

Processor 6000+ and 4 GB RAM. 

To quantitatively characterize the discrepancy between the full-scale model and ROM, two 

performance indices were defined in the verification module of our simulation tool: the absolute 

error and the rms error, which are given by 

 abs abs
abs r r fullErr U T T= −  (9) 

 ( ) ( )
2 2

1 1

s sN N

abs abs abs
rms r r full full

i i

Err U T T T

= =

= −∑ ∑  (10) 

where abs

r
T and

abs

full
T are the absolute temperature data from ROM and full-scale models; and Ns is 

the number of nodes in the model over which the rms error is evaluated. Note that Errabs is a 

vector and represents the temperature difference between the full-scale model and ROM for each 

node, while Errrms is the average relative error in the entire computational domain. In addition, by 

removing the summation symbol in Eq. (10) we can assess the node-wise relative error, which 

was used in the steady-state simulation below.  

Table 1. LISA models for Phase I MOR case studies 

 

Small-size LISA Thermal Model 

Figure 2 illustrates the comparison between TPWLMOR, full-scale Matlab and S/F for the small-

size LISA model on the steady-state solution. The temperature spans a wide range from –122 °C 

to 86 °C (Figure 2a). Figure 2b depicts the equilibrating process starting from the initial 
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temperature at 0 °C. The full-scale Matlab model shows excellent agreement with the S/F data 

with the largest relative error of 0.042%, which convincingly verifies our data export and model 

assembly procedure. The comparison between TPWLMOR, full-scale Matlab model and S/F data 

in terms of both steady-state (Figure 2a) and equilibrating-process solution (Figure 2b) exhibits 

excellent agreement with the absolute node-wise temperature errors ranging from -1 to +0.5 °C 

(mostly restricted between -0.3 and +0.3°C) yielding an average relative error less than 0.1%.  

(a) (b) 

(c) (d) 

Figure 2. Comparison between TPWLMOR, full Matlab model, and S/F for steady-state 

temperature distribution in the small-size LISA model (a) node-wise temperature, (b) the 

equilibration process (51 nodes selected at an interval of 12 nodes), (c) absolute error in 

node-wise temperature, and (d) relative error. 

Figure 3 illustrate the comparison between TPWLMOR, full-scale Matlab, and S/F data in terms 

of transient temperature distribution with the solar fluctuation frequency of 1 mHz. The ROM 

generated from the simulation of the equilibrating process was reused here. The steady-state 

solution obtained above was used as the initial condition for the transient analysis. TPWLMOR 

results show excellent agreement with full-scale Matlab and S/F data in the temporal domain at 

all times (Figure 3a). For graphical clarity, 51 nodes are selected from the 618 nodes in the small-

size LISA at an interval of 12 nodes. Strongest temperature oscillation (Figure 3b) due to the 

external solar fluctuation is clearly observed at the node carrying the highest temperature, which 

however smears out within the satellite and becomes negligible at the node with the lowest 

temperature. Figure 3c depicts the absolute errors in the node-wise temperature and their 

temporal dependence, which are similar to the steady-state simulation. The worst relative error of 

the entire computational domain as shown in Figure 3d is 0.5% with most of them falling far 

below 0.1% signifying excellent overall match between TPWLMOR and S/F data. The 

simulation results for the solar frequency of 0.1 mHz are similar and are not shown here.  
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(a) (b) 

(c) (d) 

Figure 3. Comparison between TPWLMOR, full-scale Matlab model, and S/F data for 

transient temperature distribution with a solar fluctuation frequency of 1 mHz for the 

small LISA model (a) transient node-wise temperature, (b) nodes with highest and lowest 

temperature, (c) absolute error in node-wise temperature, (d) average relative error. 

Mid-size LISA Thermal Model 

Figure 4a and Figure 4b show the comparison between TPWLMOR, full-scale Matlab, and S/F 

data in terms of the steady-state temperature profile and equilibrating process in the mid-size 

LISA model. The full-scale Matlab model matches the S/F model very well with the maximum 

node-wise relative error of 0.17%, which again verifies the data exchange interface and model 

assembly procedure. Good agreement is observed between TPWLMOR and S/F data with the 

absolute temperature error spanning from -2.8°C to +2.9 °C (Figure 4c). The worst node-wise 

relative error is ~2% with most of them <0.5%. 

(a) (b) 
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(c) (d) 

Figure 4. Comparison between TPWLMOR, full Matlab model, and SINDA/FLUINT for 

steady-state temperature distribution in the mid-size LISA model (a) node-wise 

temperature, (b) the equilibration process (47 nodes selected at an interval of 60 nodes), (c) 

absolute error in node-wise temperature, (d) relative error. 

 

(a) (b) 

(c) (d) 

Figure 5. Comparison between TPWLMOR, full Matlab model, and SINDA/FLUINT for 

transient temperature distribution with a solar fluctuation frequency of 0.1 mHz for mid-

size LISA model (a) transient node-wise temperature (b) nodes with highest and lowest 

temperature, (c) absolute error in node-wise temperature, (d) relative error. 

Figure 5 illustrate the comparison between TPWLMOR, full-scale Matlab model, and S/F data 

on the transient temperature profile using solar fluctuation frequency of 0.1 mHz. The steady-

state solution from the previous simulation (Figure 4) was used as the initial condition. 

TPWLMOR exhibits excellent accords with the full-scale S/F model at all times. Temperature 

oscillation (Figure 5b) of the solar array carrying the highest temperature evaluated by all models 

is slightly flatter than that in the small-size LISA model. The absolute error in the node-wise 

temperature and its temporal dependence are plotted in Figure 5c, and within (-2.8°C, +2.9 °C). 
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The average relative error of all nodes in the entire domain is <0.5% indicating notable overall 

performance of TPWLMOR (Figure 5d). Likewise, the transient simulation results with the solar 

frequency of 1 mHz are similar and not shown here.  

ROM Performance 

The computational performance of ROM, full-scale Matlab and S/F model are compared in Table 

2 and Table 3, respectively, for the small-size and mid-size LISA models. For the small-size 

model, it took 16.2 and 1.08 s, respectively, for ROM generation (with 64 orders) and 

computation in the steady-state analysis. The full-scale Matlab was completed in 10.7 s. It should 

be pointed out that the model generation is a one-time cost and the generated ROM can be reused 

for various operating scenarios. For example, the ROM obtained from the steady-state simulation 

was also used in the transient simulation involving fluctuating solar flux at different oscillating 

frequencies (0.1 and 1 mHz) as shown in Table 2. Discounting the model generation time, our 

ROM enables a salient speedup over the full-scale Matlab model without appreciable 

compromise in simulation accuracy. Note that as both ROM and full-scale Matlab model rely on 

the sparse matrix operation simultaneously on all nodes during ROM integration, additional 

acceleration can be obtained if a node-wise iterative solution process is used as the benchmark 

for comparison (this will be the typical case for larger thermal models). As the S/F model uses a 

computational platform and convergence criterion (1×10
-12

 °C) distinctly different from our 

ROM integration (relative tolerance 1×10
-4

) a direct comparison between ROM and S/F on the 

computational time is not made in this case. 

The comparison of the computational performance for the mid-size LISA model is summarized 

in Table 3. In the steady-state simulation, it took 341.8 s and 1.6 s, respectively, for ROM 

generation (with 64 orders) and integration, while the full-scale Matlab analysis entailed 260 s. 

For the transient simulation, the full-scale Matlab model and S/F were completed within ~300 s 

and ~600 s as opposed to 1 s using ROM. This yields a 150−−−−900X acceleration in the 

computational speed along with order-of-magnitude savings in physical memory due to the 

significantly reduced model orders. As discussed previously, the model generation time depends 

on the accuracy requirement and the number of reduced orders. Relaxation in accuracy can 

further lower the computational cost of ROM, and justify the practical values of ROM for 

spacecraft thermal analysis. 

Table 2. Comparison between TPWLMOR, full-scale Matlab, 

and SINDA/FLUINT simulation for small-size LISA model 
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Table 3. Comparison between TPWLMOR, full-scale Matlab, 

and SINDA/FLUINT simulation for mid-size LISA model 

 

CONCLUSIONS 

In this paper, we presented a novel projection-based Model Order Reduction (MOR) simulation 

tool for fast and efficient spacecraft thermal analysis. The tool provides a holistic simulation 

capability by integrating the data export & model assembly, MOR engine, DAE integration 

solver, comparison and verification module on a unified, modular framework. The MOR engine 

is based on the mathematically rigorous Trajectory Piece-Wise Linear MOR (TPWLMOR) 

algorithm to enable automated generation of reduced thermal models. Due to the low-

dimensional nature of the reduced thermal models, the DAE integration solver relying on the 

matrix manipulation can be exploited for fast analysis.  

The simulation results of two testbed models containing roughly ~600 and ~3000 nodes and 

consisting of constant sources, capacitances, and conductances were used to evaluate the 

TPWLMOR engine and solver. The full-scale models were reduced to low-dimensional models 

with 64 nodes. The overall MATLAB solution of the reduced model took about 1 second 

compared to ~10 and ~300 seconds for the full-scale solution. Excellent agreement between the 

reduced and full-scale solution with the maximum absolute nodal temperature error spanning 

from -2.8°C to +2.9 °C (primarily between -1 °C and +1 °C) and the average relative error of less 

than 0.5% were achieved. The computational expense incurred to generate the reduced model is a 

one-time cost and becomes less important as the model sizes increase. The reusability of ROM 

enables significant savings in computational times and resources for transient simulation and 

analysis. The case studies successfully establish the feasibility of our MOR technique for 

spacecraft thermal analysis.  

The future work will be focused on the development of new model/simulation capabilities (e.g., 

temperature-dependent conductors, time-dependent boundary conditions, and parameterized 

MOR), the algorithm refinement for enhanced accuracy, and software optimization for improved 

execution efficiency. In addition, we will also explore the potential of propagating our MOR 

technology to other NASA-relevant research arenas, such as fluidic and active thermal, 

aerothermal, and structural analysis.  
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NOMENCLATURE, ACRONYMS, ABBREVIATIONS 

Symbols:  

A Matrix collecting conductive conductors 

B Matrix collecting radiative conductors 

C Thermal capacitance 

D Correlation matrix 

d Distance between the temperature vector and the linearization point 

T Temperature 

H Jacobian of nonlinear function f(T) 

K Conductive conductor 

k The order of the reduced thermal model 

P Union of the local projection space 

Q Heat flux 

R Radiative conductor 

Rsi Radiative conductor to space 

s Number of the linearization points along the typical trajectory 

t The time 

U The left singular matrix or projection space 

u The thermal inputs 

V The right singular matrix 

ω Weights for each linearized reduced order model 

w Normalized weights for each linearized reduced order model 

 

Subscripts/Superscripts: 

full Full model results 

i The i
th

 node 

j The j
th

 node 

ij Between the i
th

 and j
th

 node 

r The reduced order models in the global projection subspace 

p The p
th

 linearization points along the typical trajectory 

k The reduced order models in the local projection subspace  
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